我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:小鱼儿主页玄机2站 > 平面向量场 >

平面向量的运算性质

归档日期:07-27       文本归类:平面向量场      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  向量同数量一样,也可以进行运算。向量可以参与多种运算过程,包括线性运算(加法、减法和数乘)、数量积、向量积与混合积等。

  下面介绍运算性质时,将统一作如下规定:任取平面上两点A(x1,y1),B(x2,y2),C(x3,y3)。 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

  三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,简记为:首尾相连、连接首尾、指向终点。

  四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,简记为:共起点 对角连。

  (本段文字资料整理自 ,图片为原始资料) AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、连终点、方向指向被减向量。

  -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。 实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ0时,λa的方向和a的方向相同,当λ0时,λa的方向和a的方向相反,当λ = 0时,λa=0。

  设λ、μ是实数,那么满足如下运算性质: (λμ)a= λ(μa) (λ + μ)a= λa+ μa λ(a±b) = λa± λb (-λ)a=-(λa) = λ(-a) λa=λa 已知两个非零向量a、b,那么abcosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度a与b在a的方向上的投影bcos θ的乘积。

  若a、b不共线,a×b是一个向量,其模是a×b=absina,b,a×b的方向为垂直于a和b,且a、b和a×b按次序构成右手系。若a、b共线),则有:

  混合积具有下列性质: 三个不共面向量a、b、c的混合积的绝对值等于以a、b、c为棱的平行六面体的体积V,并且当a、b、c构成右手系时混合积是正数;当a、b、c构成左手系时,混合积是负数,即(abc)=εV(当a、b、c构成右手系时ε=1;当a、b、c构成左手系时ε=-1) 上条性质的推论:三向量a、b、c共面的充要条件是(abc)=0 (abc) = (bca) = (cab) = - (bac) = - (cba) = - (acb)

本文链接:http://m2-p.net/pingmianxiangliangchang/553.html